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Launch Vehicle Failures Due to Base Heating

• Launch vehicles with 
multi-rocket engine base 
region

• Highly complex base 
flows due to changing 
multi-plume interactions 
and freestream flow

– Difficulty in numerically 
predicting such 
environments

– No analytical solution of 
this flow regime

• Base thermal protection 
system (TPS)  protects 
avionics, wiring, engine 
gimbal actuators, 
turbomachinery, etc.

• Led to the failures of 
many launch vehicles due 
to vehicle control loss by 
not adequately predicting 
base environments
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Short-Duration Base Heating Tests

• Both test programs were conducted at CUBRC Large Energy National Shock 
Tunnel I (LENS I) facility in 2016 to investigate launch vehicle base and plume 
flows

• FY16 TIP – 2% model; EUS – 3.23% model
• Rekindled NASA ground test techniques from the 1970s1

• Simulate >150,000 ft altitude conditions 
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Short-Duration Test Propulsion Models

• NASA Marshall & CUBRC developed propulsion models for the SLS and EUS base heating 
test programs in a shock tunnel2

• Hydroxyl radical - planar laser induced fluorescence (OH-PLIF) and infrared (IR) imaging 
were used for the first time to visualize both base flow and plume environments 



FY16 TIP Base Environments

• GO2-GH2 rocket engine 
performance (a,b,e,f)

• Base environments for sea-level 
and high altitude (~170,000 feet) 
conditions (c,d,g,h)

– Thin-film heat transfer gauges
– Piezo-resistive pressure sensors

• TIP main objective was to determine 
the feasibility to visualize and 
characterize base and plume 
environments for launch vehicle 
ascent flight using non-intrusive 
diagnostics in shock tunnel facility

• NCL = nozzle centerline, BCL = 
base centerline 



FY16 TIP Base Environments

• GO2-GH2 rocket engine performance (a,b,e,f)
• Base environments for sea-level and high altitude (~170,000 

feet) conditions (c,d,g,h)
– Thin-film heat transfer gauges
– Piezo-resistive pressure sensors



FY16 TIP IR Imaging 

• Long-wave IR (7.5µm – 14µm) 
camera

– Focused on the far-field
– Calibrated for surface wall 

temperature characterization
• Mid-wave IR (3µm – 5µm) 

camera
– Focused on the near-field
– Ideal to visualize base flows 
– Low and medium temperature 

sensitive to distinguish flow 
features

• Different plume flow structures 
between high altitude and sea-
level conditions 
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• Hydroxyl radical (OH) used 
as naturally occurring 
fluorescent tracer  

– Combustion intermediate 
species

• 10 ns Nd:YAG dye laser 
sheet at 20 mJ/pulse excites 
OH at 285.53 nm for flow 
visualization

– Flow freezing images
• Two intensified CCD 

cameras with OH LIF 
transmitting filters were 
positioned normal to the 
laser sheet

• Different base flow 
structures observed between 
high altitude and sea-level 
conditions

– Base flow structures not 
observed with CO2– MWIR or 
schlieren imaging

FY16 TIP PLIF Imaging



FY16 TIP PLIF Imaging

• Base flow structures 
were successfully 
visualized using OH-
PLIF

– Shows OH emission 
intensity

– Assuming constant 
mole fraction, frozen 
flow, extract qualitative
gas temperature map

• Observe good 
qualitative agreement 
between test data and 
computational results

• Complex base flow 
structures

– Stagnation shock
– Reverse jet
– Reflected shocks
– Wall jet

CFD solutions provided by F. Canabal (MSFC-EV33)

• Need to assess stagnation shock RS-25 nozzle 
impingement region

• Shock impingement can augment heating by a factor of 
~10

• Interaction first discovered by PLIF imaging

BCL



FY16 TIP PLIF Imaging

• Near-field plume flow structures were successfully visualized using OH-PLIF
• Observe good qualitative agreement between test data and computational 

results

CFD solutions provided by F. Canabal (MSFC-EV33)

• Complex plume flow structures
• Hot boundary layer
• Throat shock (cooler core flow)
• P-M expansion waves NCL



• Based on FY16 TIP imaging data analysis, 4-engine base flow model 
developed and builds upon existing base flow theories5

• Many unsteady flow structures lead to changes in the imaging data

High-Altitude 4-Engine Base Flow Model

Wedge-Shaped

Edney Type I 
Interaction



• EUS test main 
objective was to 
predict base 
convective heating 
environments and 
visualize base/plume 
flows using ground test 
data 

• MWIR imaging of sub-
scale EUS propulsion 
model start-up 

• Observe differences in 
plume structure 
between sea-level and 
high-altitude conditions 
(~240,000 ft) within 
steady-state regime

EUS IR Imaging

• Need optically thick hot gas to be observed with IR



• IR imaging is spatially averaged data taken between 100 Hz and 180 Hz
• Good qualitative agreement observed between IR data and computational solutions
• Major feature observed is the 4-lobed reflected shocks and their wake

EUS IR Imaging

CFD solutions provided by C. Lee (MSFC-EV33)



EUS PLIF Imaging

• Good qualitative agreement observed between PLIF data & computational solutions
• All major base flow structures observed

– Similar to SLS core-stage base flow (TIP) and confirms 4-engine base flow model
• Similar flow structures and qualitative trends observed between ground test data and 

CFD

BCL

246 kft 250 kft



EUS Test PLIF – Flight CFD Comparison

• Observe similar flow structures between 
ground test PLIF imaging, test model 
CFD and flight CFD solutions

• Similar concave stagnation shock structure, 
stand-off distance and shock diameter 

• Similar in-plane reflected shock contours
• Similar expanding reverse jet 

• Suggests sub-scale ground test 
simulates appropriate flow physics to 
flight 

• Provides further confidence in plume-
induced flight environments based on 
ground test 

• Need to assess stagnation shock - RL10 
nozzle impingement

In

Out

CFD solutions provided by C. Lee (MSFC-EV33)
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• 𝐴, 𝑔u, 𝐸u, 𝑘	are determined from handbooks of 
spectroscopic constants, chemistry and 
physics

• 𝜆, 𝐼 are obtained from the test program
• From the slope of the Boltzmann plot, 

temperature of the targeted gas can be 
estimated 

Run # name J 𝜆 (nm)
39 Low J Q2(6) 283.380
22 mid J Q1(8) 283.553
23 High J 1 Q2(12) 285.545

24 High J 2 Q2(12) 285.545
8 mid J Q1(8) 283.553

5 test runs were used at three 𝝀	𝐭𝐚𝐫𝐠𝐞𝐭𝐬
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PLIF Thermometry

Boltzmann Plot
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EUS Thermometry – Interrogation – Window 2 x 2
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PLIF Thermometry
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EUS GT Base Static Temperature Distribution

4x4 Binning

2x2 Binning

8x8 Binning

T2

T1 

Base
Nozzle

Exit

1σ

1σ

1σ

T1 = Temp Pre Stagnation Shock
T2 = Temp Post Stagnation Shock

• Temperature distribution taken 
along the center of the plume 
shield to just past the nozzle 
exit as shown in the dotted 
white line

• Binning was conducted to 
obtain mean values and 
uncertainty statistics of the 
thermometry PLIF 2D data

• 2x2 binning = uncertainty 
statistics and mean value were 
obtained from surrounding 4 
pixels

• Dark solid lines are mean 
distributions and dashed lines 
are the uncertainty 
distributions for three binning 
techniques (2x2, 4x4 and 8x8)

~T0
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• TIP & EUS test programs provided for the first time proof-of-
concept and technical maturation of non-intrusive diagnostics 
of visualizing and characterizing complex reacting plume-
induced base flows in a ground test facility

• Led to an increase in the technology readiness level (TRL) for 
short-duration hot-fire test technique and improves confidence 
in plume-induced flight convective environment predictions 

• In the process of developing EUS and SLS base gas 
temperature maps from PLIF thermometry 
– Historically, experimental base gas temperature data has the highest 

uncertainty and limited flight data and no temperature map has been 
obtained to date

– First time develop a temperature data map of this region to increase the 
fidelity of base convective heating predictions

Conclusions
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